The Need for a New Approach to Assessing the Proarrhythmic Potential of Drugs and Overview of CiPA

Philip Sager, MD, FACC, FAHA, FHRS
Adjunct Professor of Medicine
Stanford University School of Medicine
Member, Executive Committee,
Cardiac Safety Research Consortium
Psager@Stanford.edu
QT Prolongation/Drug-Induced Torsade

- 2002-2005 ICH Regulatory Discussions
- ICH E14/S7B

- Focus on surrogates- HERG and QTc testing
 - Both are sensitive but not very specific for predicting a drug’s proclivity to be proarrhythmic
 - Relatively low positive predictive value

- HERG/QT Testing has had major impact on drug development
 - Whether drugs progress into humans
 - Whether their development is continued
 - Delays in approval
 - Labeling implications
 - Costs: > 1 Billion $
Consequences: Compound with QT effect

Consequences of developing a compound with QT effect

- Significant development burden
- Increased perceived risk = increased burden to demonstrate benefit
- Increased costs
- Delays in filing and/or approval
- Label warnings and competitive implications
- Licensing/partnering issues
- Often leads to termination of development
Examples of Label Implications of a QT Signal

• Alfuzosin
 – This observation [mild QT prolongation] should be considered in clinical decisions to prescribe UROXATRAL for patients with a known history of QT prolongation or patients who are taking medications known to prolong QT

• Ziprasidone
 – [has a] greater capacity to prolong the QT/QTC interval compared to several other antipsychotic drugs. …raises the possibility that the risk of sudden death may be greater for ziprasidone than for other available drugs ...
 – In many cases this would lead to the conclusion that other drugs should be tried first
QT Prolongation: Dissociation from TdP

- Sodium Pentobarbital
 - Prolongs QT but no TdP
 - Inhibits I_{kr}, I_{ks}, and late I_{Na}

- Amiodarone
 - TdP very rare
 - Inhibits I_{kr}, I_{ks}, late I_{Na}, and I_{Ca}

- Verapamil
 - Inhibits I_{Kr} and I_{Ca}

- Ranolazine
 - Prolongs QT but no TdP
 - Inhibits late I_{Na} and I_{kr}
QT Prolongation: Dissociation from TdP

- **Sodium Pentobarbital**
 - Prolongs QT but no TdP
 - Inhibits I_{kr}, I_{ks}, and late I_{Na}
 - No EAD’s, reduces dispersion

- **Amiodarone**
 - TdP very rare
 - Inhibits I_{kr}, I_{ks}, late I_{Na}, and I_{Ca}
 - No EAD’s, reduces dispersion

- **Verapamil**
 - Inhibits I_{Kr} and I_{Ca}
 - No QT prolongation or TdP

- **Ranolazine**
 - Prolongs QT but no TdP
 - Inhibits late I_{Na} and I_{kr}
 - No EAD’s, reduces dispersion
 - Suppresses E4031 induced TdP

Prolonged QT need not lead to TdP if there is also block of late sodium or calcium currents
Current Proarrhythmia Evaluation

- ICH E14/S7B have resulted in no drugs with unrecognized risk being approved or removed from the market

- Negative impact on drug development
 - Premature discontinuation due to hERG or QT “signal”
 - (Inaccurate) perception of risk leading to drug discontinuation
 - Estimates of up to 60%
 - Concerns regarding development burden, costs, labeling
 - Many potentially good compounds never get evaluated in humans due to a hERG effect
 - Many drugs with QT labeling are unlikely to actually be proarrhythmic
CiPA: Comprehensive In Vitro Proarrhythmia Assay

Goal: Develop a new *in vitro* paradigm for cardiac safety evaluations of new drugs that provides a more accurate and comprehensive *mechanistic-based* assessment of proarrhythmic potential.

Focus: On proarrhythmia (not QT prolongation)

We understand the mechanism of TdP: EADs

Potential significant impact on drug development
Components of CiPA

- **In vitro Assessment of Drug Effects in Multiple Ionic Currents**
 - Sodium
 - Calcium
 - hERG Potassium

- **In silico Computer Modeling to Predict Risk**
 \[I_{stim} = C \frac{dV_m}{dt} + I_m \]

- **In vivo ECG Biomarker in Phase 1 Clinical Trials**
 - Torsade Metric Score (qNET)
 - ECG
 - Check for unanticipated human effects, confirm mixed channel effects using \(JT_{peakc} \)
 - Can be considered for unanticipated nonclinical effects, or if human ECG data is insufficient

Modified from Jose Vicente
CiPA: Focus on Proarrhythmia

• Reduce the premature termination of drugs with favourable benefit:risk profiles
 – Permit straightforward development and benign labelling of drugs with a low proarrhythmic risk, despite modest QTc prolongation (<20 ms)

• Make drug development more efficient
 – Use preclinical assays to improve candidate selection
 – Move the bulk of proarrhythmic assessment to the discovery phase; simplify clinical development
 – Earlier removal of regulatory uncertainty

• Revise current labels and improve accuracy of how drugs are labelled relative to actual proarrhythmic risks
 – Benign labels for drugs with moderate QT prolongation and low TdP risk
Additional Potential CiPA Benefits

• May be able to reduce the exposure margins in Phase 1 QT assessments

• Permit an alternative risk assessment for drugs with substantial HR increases that confound QT interpretation

• Permit an earlier assessment in Phase 1 of oncology drugs regarding the lack of a concerning proarrhythmic risk
 – Significant opportunity for CiPA to de-risk many oncology drugs
CiPA is Not a Biomarker Validation Project

History of TQT Study

• In 2001, QTc was chosen as the biomarker to assess drug risk for development of Torsade de pointes (TDP)
• QTc is a known biomarker for TdP but its sensitivity and specificity for central tendency changes with respect to TdP development were not well defined
• The TQT Study metrics were not based on clinical data beyond placebo datasets
 • A validation was not performed

• It is appreciated that:
 • TdP risk is somewhat drug-specific, despite similar degrees of QT prolongation
Validation of CiPA

• CiPA is based on a deep understanding of TdP mechanisms
 • The triggering event is EAD’s
 • We understand the ionic factors that result in EAD’s
 • This is directly amenable to study

• Such insights permit the evaluation of an individual drug’s proclivity for causing TdP using an *in silico torsade metric score*

• Validation was based on testing the in silico model’s predictive abilities with respect to a series of reference compounds

• The same compounds were evaluated in IPS cardiomyocytes

• Clinical studies were performed testing ECG analysis of the T-Wave morphology to identify drugs with multi-channel block (I_{Ca} and late I_{Na})
How CiPA Would Likely be Used

1. Drug Discovery - electively to add value to compound selection and preclinical safety assessment

2. To better define potential arrhythmic risk if a drug has a hERG signal or an animal/human QT signal
 - Internal decision making
 - Regulatory purposes- requires standardized CiPA evaluation

3. Alternative to the current S7B/ICH E14 approach
 - Perform standardized CiPA evaluation
 - Drugs with low CiPA proarrhythmic risk, despite anticipated moderate QT prolongation (e.g., 10 to 20 ms at highest clinical exposure), generally need not perform intensive Phase 3 QT evaluation and can expect benign labeling
Data Presentations and How CiPA Would Likely be Used

• In Silico
• Ion Channel
• IPS Cardiomyocytes
• Phase 1 ECGs

• Potential algorithms and roles in preclinical and clinical development
• Regulatory Aspects
Acknowledgments

CiPA Steering Committee
Ayako Takei, Bernard Fermini, Colette Strnadova, David Strauss, Derek Leishman, Gary Gintant, Jean-Pierre Valentin, Jennifer Pierson, Kaori Shinagawa, Krishna Prasad, Kyle Kolaja, Natalia Trayanova, Norman Stockbridge, Philip Sager, Tom Colatsky, Yasunari Kanda, Yuko Sekino, Zhihua Li

CiPA Working groups
• Ion Channel working group
• In silico working group
• Cardiomyocyte working group
• Phase 1 ECG working group

FDA, EMA, PMDA, Health Canada
CSRC, HESI, SPS, JiCSA
In Silico Modelers
Numerous Academic Groups, Pharmaceutical and Device Companies
CRO’s
Thank you

Philip Sager, MD, FACC, FAHA
Psager@Stanford.edu
Ph 650.450.7477