Cardiovascular Event Identification in EHR & Claims Data

Bradley G. Hammill, DrPH
Duke Clinical Research Institute
Disclosures for
Bradley G. Hammill, DrPH

Research Funding
Amgen, Novartis, GlaxoSmithKline (pending), Boston Scientific (pending), St Jude Medical (pending)
Endpoint Selection in Electronic Healthcare Data

Most reliable if serious and results in immediate healthcare episode

Typical MACE components
- Myocardial infarction
- Stroke
- Congestive heart failure
- Coronary revascularization
- Major bleeding
- Cardiovascular death
Reliability of Endpoint Ascertainment is Variable

Mortality

Occurrence (but not cause) s/b highly reliable in claims

Procedure-based endpoints

Highly reliable due to need for reimbursement

Hospitalization-based endpoints

Dependent on coding of condition

Less Questionable

MI

~10 ICD-9-CM Dx codes w/in 1 3-digit code series

More Questionable

Stroke

~15 ICD-9-CM Dx codes w/in 5 3-digit code series

Bleeding

~80 ICD-9-CM Dx codes w/in ~20 3-digit code series
Comparing to Adjudicated Trial Rates

<table>
<thead>
<tr>
<th>Myocardial Infarction</th>
<th>Adjudication criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claims criteria</td>
<td>Adjudication criteria</td>
</tr>
</tbody>
</table>
| Inpatient encounter w/ ICD-9-CM diagnosis code 410.x0, 410.x1 in primary position | ECG or changes consistent with acute infarction or ischemia MI:
• New diagnostic Q waves (Q wave in leads V2 and V3 ≥ 0.02 sec or QS complex in leads V2 and V3; Q wave ≥ 0.03 sec and ≥ 0.1 mV deep or QS complex in leads I, II, aVL, aVF or V4-V6 in any two leads of a contiguous lead grouping (I and aVL; V1-V6; II, III, aVF, R wave ≥ 0.04 sec in V1 and V2 and R/S ≥ 1 with a concordant positive T wave)) in the absence of conduction abnormalities
• New significant ST-segment- T-wave changes in two or more contiguous leads: ST elevation at the J point ≥ 0.1 mV in all leads other than leads V2 and V3 where the following cut points apply: ≥ 0.2 mV in men ≥ 40 years; 0.25 mV in men < 40 years, or ≥ 0.15 mV in women. ST depression horizontal or downsloping ≥ 0.05 mV; or T wave inversion ≥ 0.1mV with prominent R wave or R/S ratio ≥ 1.
• Development of new left bundle branch block (LBBB)
• Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality
• Intracoronary thrombus by angiography
AND
Elevated cardiac biomarkers (values according to each hospital's laboratory): A rise and/or fall in cardiac biomarker values (preferably troponin, CKMB, AST, LDH or myoglobin) with at least one value above the 99th percentile of the upper reference limit. |
Case-Identification Algorithms

Sources include…

Validation studies
Other published studies
Quality measure definitions
Reimbursement guidance (esp. procedures)

Direct code searches
Using Existing Algorithms

Validation study caveats

- Based on small sample?
- Based on single site data?
- Do not report sensitivity or specificity?
- Based on claims data, not EHR data?
- Discordant results from another study?

General considerations

- Algorithm for incident events or prevalent disease?
- Based on code sets you need?
New Algorithm: ADAPTABLE Major Bleeding

Need to understand…
– All possible coding for transfusions
– Insurance coverage allowances
– Reimbursement documentation requirements

Good practice: Validate a sample of your endpoints
EHR Data and Endpoint Ascertainment

Issues to consider

– Less structured and less consistent than claims

 e.g. primary diagnosis not necessarily an EHR concept

– Different coding systems

 e.g., SNOMED-CT, site-specific

– Mortality outside of the system is not well captured

– Potential for site-specific differences in…

 …completeness of patient healthcare received

 …coding practices

 …data availability
Other safety endpoints using EHR data?

“Additional parameters such as increase in body weight, oedema/fluid retention, occurrence of hypertension, significant changes in heart rate/arrhythmias, or increases in LDL-cholesterol could also be systematically collected whenever this is considered relevant (e.g. based on mechanism of action or pre-clinical findings). Clinically relevant changes in cardiac function should be evaluated by cardiac imaging, if there is an indication of a detrimental effect on cardiac function.”

Source: EMA, Reflection Paper on Assessment of Cardiovascular Safety Profile of Medicinal Products