Non-sustained VT in Drug Development

Jay W. Mason, MD
CSRC Meeting at ACC
December 2, 2015
A Recurring Dilemma

In my practice as a consultant to pharmaceutical sponsors, this is a common scenario:

• NSVT recorded during Holter or telemetry monitoring in an early-in-man study

• Incidence greater in drug compared to placebo recipients (or, no placebo in the study design)

• Concern arises by sponsor, potential partners and FDA:
 • Should the drug be killed?
 • Can the drug be developed further without first quantifying or disproving the relationship between drug and NSVT?
 • How can the relationship between drug and NSVT be evaluated in a scientifically sound manner?
 • What type of monitoring will be required during and after the drug’s development?
First: Exclude False NSVT

- SVT with aberrancy
- Artifact superimposed on NSR
- Ventricular bigeminy with aberrancy
- Neural stimulators
- High field MRI
- Tremor
Bottom Line

For the time being, I do not recommend Holter or other forms of monitoring to detect NSVT (and other arrhythmias) in clinical drug development, unless a prior observation forces it.
Why?

• At present we do not know:
 • The daily incidence of NSVT in normal subjects
 • The day-to-to variability of the incidence of NSVT in normal subjects
 • The age and sex-related variation in the incidence of NSVT in normal subjects
 • The distribution of the duration of NSVT in normal subjects
 • The distribution of the time-of-day of NSVT in normal subjects
 • The frequency, duration and timing of monitoring required to reliably detect NSVT in normal subjects
 • The frequency, duration and timing of monitoring required to reliably detect a drug-related change in the incidence or duration of NSVT in normal subjects
 • The risk posed by presence of NSVT in normal subjects and various patient subsets
 • The influence of frequency, duration and timing on risk

• New research, underway, may provide this missing information (except for the last two bullets)
Why?

• At present we do not know:
 • The daily incidence of NSVT in normal subjects
 • The day-to-to variability of the incidence of NSVT in normal subjects
 • The age and sex-related variation in the incidence of NSVT in normal subjects
 • The distribution in the duration of NSVT in normal subjects
 • The distribution in the time-of-day of the incidence of NSVT in normal subjects
 • The frequency, duration and timing of monitoring required to reliably detect NSVT in normal subjects
 • The frequency, duration and timing of monitoring required to reliably detect a change in the incidence or duration of NSVT in normal subjects
 • The risk posed by presence of NSVT in normal subjects and various patient subsets
 • The influence of frequency and duration on risk

• New research, underway, may provide this missing information (except for the last two bullets)
Risk – Much Ado About Nothing?

We really don’t know if or to what extent NSVT is a risk for more threatening arrhythmias in normal subjects.

- 73 normal subjects with complex VEA on HM followed for mean 6.5 years; 26 had NSVT
- Two deaths (1 cancer, 1 sudden)
- Expected number of deaths 7.4

Long-Term Follow-up of Asymptomatic Healthy Subjects with Frequent and Complex Ventricular Ectopy

Harold L. Kennedy, M.D., M.P.H., James A. Whitlock, B.S., Michael K. Sprague, Lisa J. Kennedy, Thomas A. Duckingham, M.D., and Robert J. Goldberg, Ph.D.

- 193 healthy military aviators followed for mean 10.6 years
- No sustained VT events documents
- Three sudden deaths: CAD, DCM, MVP

Nonsustained ventricular tachycardia in 193 U.S. military aviators: long-term follow-up.

Gardner RA², Kruyer WB, Pickard JS, Celio PV

- 193 healthy military aviators followed for mean 10.6 years
- No sustained VT events documents
- Three sudden deaths: CAD, DCM, MVP
Exceptions - scenarios in which monitoring should be done if NSVT detected, despite knowledge gaps

• Ventricular ectopy documented in animal studies
• The drug prolongs QT or QRS interval
• The drug has known, strong cardiac ion channel blocking properties (I_{Kr}, I_{Ks}, I_{K1}, I_{Na}, I_{CaL})
• Caveat: Not clear what the monitoring regimen should be
A Temporary Solution to the NSVT problem (which I recommend)

• Do not do arrhythmia analyses on Holter data collected in early clinical drug development.

• If you employ telemetry monitoring in early clinical drug development, establish written, liberal rules allowing for episodes of NSVT without further assessment.

• The same rule setting could be used for other “normal” abnormal rhythms (such as second degree AV block and sinus pauses).
Why the Temporary Solution?

I know of two studies designed to define NSVT (and other arrhythmia) incidence in normal subjects. Without the epidemiological information these studies will provide:

• How can you design a science-based monitoring regimen to evaluate baseline NSVT occurrence?
• How can you endeavor to prove presence or absence of drug-induced NSVT?
• Is such an endeavor too expensive and time consuming to undertake during drug development?
• Are phase 4 monitoring programs more practical?
Pending Research

• These studies will retrospectively determine the incidence of NSVT on 24-hour recordings from normal subjects who participated in clinical trials

• Will determine the variability of the incidence of NSVT on serial recordings

• May identify factors that affect reproducibility

• Will include factors that may affect risk (to be proven later)
Factors That May Influence Occurrence, Reproducibility and Risk of NSVT in Normal Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Rhythm</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Age</td>
<td>• Frequency</td>
</tr>
<tr>
<td>• Sex</td>
<td>• Duration</td>
</tr>
<tr>
<td>• Confined vs outpatient</td>
<td>• Rate</td>
</tr>
<tr>
<td>• Activity level</td>
<td>• Morphology (mono vs pleomorphic)</td>
</tr>
<tr>
<td></td>
<td>• Prematurity</td>
</tr>
<tr>
<td></td>
<td>• Time of day</td>
</tr>
<tr>
<td></td>
<td>• Clustering</td>
</tr>
</tbody>
</table>
Overwhelming Difficulty of Proving Proarrhythmia

Spontaneous variability of ventricular arrhythmias in patients with chronic heart failure.
Anastasiou-Nana M†, Meniove RL, Nanao JN, Mason JW.

- Patients with HF undergoing 3 consecutive Holter recordings on placebo
- To confidently identify an increase in VT events (i.e., exceeding the 95% CI of spontaneous variability) would have required a 6000% increase in events from the first to subsequent Holter recordings

Am J Cardiol. 1987 Jan 1,59(1) 97-9

Application of a frequency definition of ventricular proarrhythmia.
Morganroth J, Borland M, Ciao G.

- Patients with VEA undergoing 2 or more consecutive Holter recordings on placebo
- Using a 10-fold increase (1000%) criterion yielded a 3% false positive rate for VT exacerbation
My guess at what epidemiological studies will show

- NSVT is modestly frequent in normal subjects undergoing a single 24-hour monitoring period (2%?).
- NSVT is more frequent in normal subjects undergoing two 24-hour monitoring periods (3%).
- NSVT is not very reproducible from one day to the next (30%).
- Reproducibility of detected NSVT is directly related to its frequency on the first day.
- The frequency and duration of NSVT is influenced by sex and age and other subject characteristics.
- Reproducibility of detected NSVT is influenced by the duration of the detected NSVT.
- In most cases, proving or disproving drug-induced NSVT is too burdensome as a pre-NDA requirement.
Possible Phase 4 Approaches

• It is likely that in most cases true drug-induced NSVT can only reasonably be proven in the large numbers of patients that will be exposed in Phase 4.

• Post-marketing prospective registries could be used to follow an appropriate number of drug recipients
 • with pre-drug and on-drug holter recordings
 • periodic status assessments
 • documented arrhythmia event
 • sudden death
 • these event rates could be compared with comparable patient populations not receiving the drug, either prospectively or via AERS

• The post-marketing approach has the huge potential advantage of defining the risk posed by drug-induced NSVT