The role of echocardiography in heart screening for sudden cardiac death

Nancy Goldman Cutler MD
Pediatric Cardiology
Beaumont Children’s Hospital
No disclosures
TABLE 3 Implications of Screening ECG and/or ECHO on PPV, NPV, Number Needed to Screen, False-Positives, and False-Negatives for Illustrative Points on the HSROC Curve

<table>
<thead>
<tr>
<th>Prevalence per 100 000</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>Number Needed to Screen to Detect 1 Case</th>
<th>Number of False-Positives When Detecting 1 Case</th>
<th>Number of False-Negatives per 100 000 Screened</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illustrative point where sensitivity and specificity are equally weighted (maximal accuracy) with prevalence from meta-analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCM & ECG</td>
<td>45</td>
<td>0.847</td>
<td>0.848</td>
<td>0.0025 (1/400)</td>
<td>0.9999</td>
<td>2624</td>
<td>399</td>
</tr>
<tr>
<td>HCM & ECHO</td>
<td>45</td>
<td>0.851</td>
<td>0.851</td>
<td>0.0026 (1/390)</td>
<td>0.9999</td>
<td>2611</td>
<td>389</td>
</tr>
<tr>
<td>HCM & ECG/ECHO</td>
<td>45</td>
<td>0.837</td>
<td>0.837</td>
<td>0.0023 (1/434)</td>
<td>0.9999</td>
<td>2655</td>
<td>433</td>
</tr>
<tr>
<td>LQTS & ECG</td>
<td>7</td>
<td>0.861</td>
<td>0.860</td>
<td>0.0004 (1/2324)</td>
<td>0.9999</td>
<td>16 562</td>
<td>2323</td>
</tr>
<tr>
<td>WPW & ECG</td>
<td>136</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>735</td>
<td>0</td>
</tr>
<tr>
<td>Illustrative point where specificity is given more weight (maximal specificity) with prevalence from meta-analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCM & ECG</td>
<td>45</td>
<td>0.039</td>
<td>0.999</td>
<td>0.0173 (1/58)</td>
<td>0.9996</td>
<td>56 980</td>
<td>57</td>
</tr>
<tr>
<td>HCM & ECHO</td>
<td>45</td>
<td>0.607</td>
<td>0.999</td>
<td>0.2146 (1/5)</td>
<td>0.9998</td>
<td>3661</td>
<td>4</td>
</tr>
<tr>
<td>HCM & ECG/ECHO</td>
<td>45</td>
<td>0.514</td>
<td>0.999</td>
<td>0.1879 (1/5)</td>
<td>0.9998</td>
<td>4323</td>
<td>4</td>
</tr>
<tr>
<td>LQTS & ECG</td>
<td>7</td>
<td>0.106</td>
<td>0.999</td>
<td>0.0074 (1/136)</td>
<td>0.9999</td>
<td>134 771</td>
<td>135</td>
</tr>
<tr>
<td>WPW & ECG</td>
<td>136</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>735</td>
<td>0</td>
</tr>
<tr>
<td>Illustrative point where sensitivity and specificity are equally weighted (maximal accuracy) with oft-cited prevalence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCM & ECG</td>
<td>200</td>
<td>0.847</td>
<td>0.848</td>
<td>0.0110 (1/91)</td>
<td>0.9996</td>
<td>590</td>
<td>90</td>
</tr>
<tr>
<td>HCM & ECHO</td>
<td>200</td>
<td>0.851</td>
<td>0.851</td>
<td>0.0113 (1/88)</td>
<td>0.9996</td>
<td>588</td>
<td>87</td>
</tr>
<tr>
<td>HCM & ECG/ECHO</td>
<td>200</td>
<td>0.837</td>
<td>0.837</td>
<td>0.0102 (1/98)</td>
<td>0.9996</td>
<td>597</td>
<td>97</td>
</tr>
<tr>
<td>LQTS & ECG</td>
<td>50</td>
<td>0.861</td>
<td>0.860</td>
<td>0.0031 (1/326)</td>
<td>0.9999</td>
<td>2323</td>
<td>325</td>
</tr>
<tr>
<td>WPW & ECG</td>
<td>200</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>500</td>
<td>7</td>
</tr>
<tr>
<td>Illustrative point where specificity is given more weight (maximal specificity) with oft-cited prevalence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCM & ECG</td>
<td>200</td>
<td>0.039</td>
<td>0.999</td>
<td>0.0725 (1/14)</td>
<td>0.9981</td>
<td>12 821</td>
<td>13</td>
</tr>
<tr>
<td>HCM & ECHO</td>
<td>200</td>
<td>0.607</td>
<td>0.999</td>
<td>0.5488 (1/2)</td>
<td>0.9982</td>
<td>824</td>
<td>1</td>
</tr>
<tr>
<td>HCM & ECG/ECHO</td>
<td>200</td>
<td>0.514</td>
<td>0.999</td>
<td>0.5074 (1/2)</td>
<td>0.9980</td>
<td>973</td>
<td>1</td>
</tr>
<tr>
<td>LQTS & ECG</td>
<td>50</td>
<td>0.106</td>
<td>0.999</td>
<td>0.0504 (1/20)</td>
<td>0.9996</td>
<td>18 868</td>
<td>45</td>
</tr>
<tr>
<td>WPW & ECG</td>
<td>200</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>500</td>
<td>0</td>
</tr>
</tbody>
</table>

EGC/ECHO, ECG combined with ECHO.

PEDIATRICS Volume 129, Number 4, April 2012

Electrocardiogram Screening for Disorders That Cause Sudden Cardiac Death in Asymptomatic Children: A Meta-analysis
What are the issues?

- What are we trying to accomplish with echo?
- Who to screen?
- Frequency of individuals screened?
What are the issues?

- Cost
- Variations in equipment
- Variations in execution/protocol
- Variations in interpretation
- Storage/archiving
Beaumont Healthy Heart Check Screen

• Started in 2007
• 5 components
 – detailed health history questionnaire
 – Blood pressure
 – Physical exam by cardiologist
 – Electrocardiogram
 – Possible echocardiogram
Beaumont Healthy Heart Check Screen

• Started in 2007
• 5 components
 – detailed health history questionnaire
 – Blood pressure
 – Physical exam by cardiologist
 – Electrocardiogram
 – “quick-look” echo in everyone (2013)
Beaumont Healthy Heart Check Screen

- “quick-look” echo
- 5 views
 - Parasternal long
 - Parasternal long with color
 - Apical 4 chamber
 - Apical 5 chamber
 - Apical 5 chamber with color
Summary

- 2007-2015
- 11,534 students
 - Age 13-18+
- 1169 follow-up with physician
- 155 stops, follow-up with physician
- 7 HCM, 2 dilated CM, 1 possible LVNC
 - HCM (43/100,000)
- Since 1/2013 when all screened had echo
 - 2464 kids screened
 - No HCM
 - 317 follow-up with physician
 - 61 Stops
Summary

• We need uniformity
• Short term
 – Determine who
 – Establish uniformity
 – Establish feasibility
 – Work on ways to implement
 – $$$
Summary

• Long-term
 – Implement screening
 – Ensure uniformity
 – Accommodate for new technology