How Does the CIPA Initiative Relate to the IQ-CSRC Project?

Philip Sager, MD, FACC, FAHA, FHRS
Consulting Professor of Medicine
Stanford University School of Medicine
Chair, Scientific Programs Committee,
Cardiac Safety Research Consortium
Psager@Sagerconsulting.com
Industry Relationships

Member of DSMB, Adjudication Committee, or Consultant

- Genentech
- Abbvie
- Aerpio
- Akebia
- Balance
- Medtronic
- Biomedical Systems
- ICardiac
- Heart Metabolics
- Milestone
- Theravance
- Lilly
- Viamet
- Shire
- Helsinn
- Celgene
- SNBL
- Pharmacyclics
- Anthera
IQ-CSRC Clinical Study

- Demonstrates a sufficiently high level of sensitivity to be considered in lieu of the TQT Study
- Demonstrates the value of PK/PD modeling
IQ-CSRC Clinical Study

- Demonstrates a sufficiently high level of sensitivity to use in lieu of the TQT Study
- Demonstrates the value of PK/PD modeling
Achievements/Issues
With Current Approach

• ICH E14/S7B have resulted in no drugs with unrecognized risk being approved

• QT prolongation ≠ Proarrhythmia

• HERG block ≠ Proarrhythmia

• Negative impact on drug development

• New paradigm
CIPA

- CIPA is clearly a different paradigm from the current approach

- Focused on the potential of a drug to have a meaningful risk of causing TdP, not on the QTc

- It is not primarily focused on other electrophysiologic effects, such as conduction block
 - Assessment of multiple ion channels should be informative
CiPA: Three Component Proposal

Ionic Currents / In Silico Based Approach

Effects on Multiple Cardiac Currents (Voltage Clamp Studies) + Reconstruction of Cellular Electrophysiology (In Silico Studies)

Myocyte-Based Approach

Effects on Human Ventricular Myocytes (In Vitro Studies)

Human Phase 1 ECG’s

Effects on Human ECG morphology/waveforms
CiPA: Three Component Proposal

Ionic Currents / In Silico Based Approach
- Effects on Multiple Cardiac Currents (Voltage Clamp Studies)
- Reconstruction of Cellular Electrophysiology (*In Silico* Studies)

Myocyte-Based Approach
- Effects on Human Ventricular Myocytes (*In Vitro* Studies)
- Human Phase 1 ECG’s
- Effects on Human ECG morphology/waveforms
Human Phase 1 ECG’s Under CIPA

- To confirm that there are not unanticipated drug-induced electrophysiologic/ECG effects based on the preclinical assessments
- Identify preclinical false negatives
 - Untested ion channels
 - Human-specific metabolites
- Unanticipated findings, if of possible clinical significance, might indicate a need for additional analysis
 - Scenario 1- CIPA identifies a compound as being very low risk for TdP and, as expected there is QT prolongation- no further evaluation needed
 - Scenario 2- CIPA identifies a compound as being very low risk for TdP and, there is unexpected QT prolongation- further evaluation may be needed
- Also of interest are other channel effects- Na, Ca, etc.
Human Phase 1 ECG’s

- Also critical for effects on ventricular and AV conduction

- Requires careful ECG interval and waveform assessments

- Q_{T_C} PK/PD modeling clearly increases sensitivity and adds value

- Are other novel intervals useful to evaluate?
 - For example, $J-T_{peak}$, $T_{peak}-T_{end}$

- Working group will be focusing on this for CIPA
Going Beyond QT to Differentiate Multi-Channel Effects

QRS

J-Tpeak

Tpeak-Tend

ECG

Calcium, late sodium

Sodium

Ventricular action potentials

hERG potassium

ECG Signature Dependent on Ion Channel Effects

Table 1 Impact of “pure” and mixed hERG channel blockers on electrocardiographic intervals

<table>
<thead>
<tr>
<th>ECG interval</th>
<th>“Pure” hERG block (dofetilide)</th>
<th>hERG block + ICa block (verapamil)</th>
<th>hERG block + peak INa (quinidine)</th>
<th>hERG block + late INa (ranolazine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>No Δ</td>
<td>↑</td>
<td>No Δ</td>
<td>No Δ</td>
</tr>
<tr>
<td>QRS</td>
<td>No Δ</td>
<td>No Δ</td>
<td>↑</td>
<td>No Δ</td>
</tr>
<tr>
<td>QTc</td>
<td>↑</td>
<td>No Δ</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>J-T_{peak}</td>
<td>↑</td>
<td>No Δ</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>T_{peak}-T_{end}</td>
<td>↑</td>
<td>No Δ</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

PR interval data may be difficult to interpret due to heart rate and autonomic effects
Pure hERG Block (Dofetilide) vs. hERG>Calcium>Sodium Block (Quinidine)

- Pure hERG block equally prolonged J-Tpeak and Tpeak-Tend
- hERG block with additional Ca & Na block prolonged Tpeak-Tend > J-Tpeak

Phase 1 ECG Assessment Under CIPA

- PK/PD modeling of QTc seems appropriate, given higher sensitivity
- Other intervals may provide insight into multi-channel effects
 - QRS, J-T_{peak}, T_{peak}-T_{end}
 - ? Other indices
- Appropriate methodologies need to be defined
 - ECG analysis approach- single lead, composite, vector
- Working group commencing in early 2015
Thank you

Philip Sager, MD, FACC, FAHA
Psager@Sagerconsulting.com
Ph 650.450.7477