Statistical Assumptions for TREAT Pilot Roll Out

Kevin J. Anstrom, PhD
Assistant Professor of Biostatistics and Bioinformatics
Duke University Medical Center
Duke Clinical Research Institute
Event Rates and Sample Size Assumptions

- Femoral bleeding rates will be roughly 2.5% depending on the study population and the bleeding definition.
- Preliminary data would suggest that a decrease of 50+% is plausible.
- As is often the case, the maximum feasible sample size is partly determined by non-statistical issues such as budget, number of enrolling sites, equipoise, etc.
In the simplest case, we would be designing a 2-arm RCT with randomization at the patient level.

Suppose we set the allocation ratio to 1:1 and Type I error at 0.05 (two-sided).

Event Rates: 1.0% for radial vs. 2.5% for femoral.

Testing the hypothesis of equality of proportions in two groups.
Simplified Sample Size Calculation

- For 85% power, we would need 1502 patients per group (total N of 3004)
- For 90% power, we would need 1735 patients per group (total N of 3470)
- This study is likely to be observational rather than randomized, so these calculations should be viewed as approximations to be modified depending on the study design
- In a propensity score matched design we would want > 1500 matched pairs of radial with (concurrent) femoral controls
Additional Considerations

- These calculations do not account for missing data or cross-overs
- Low number of expected events: 2000 radial cases would be expected to result in 20 bleeding events
- Clearly subgroups will be underpowered for interaction tests
- If randomized, at what level?
 Patient, interventionalist, site, other
- Clusters may be unwilling to randomize