Interpreting Adult Human Thorough QT Studies: Are They Relevant to Pediatric Safety?

Hao Zhu, Ph.D.
Scientific Lead,
QT-IRT, FDA
(Dec 10, 2010)

Disclaimer: The views expressed in this talk are those of the authors and do not reflect official policy of the FDA. No official endorsement by the FDA is intended or should be inferred.
Outline

• Introduction
• Key issues
• Case study
• Take-home message
Introduction

QT/QTc prolongation may cause ventricular arrhythmias
 • torsade de pointes (TdP)

Thorough QT studies (TQTS), the standard approach to evaluate QTc prolongation, are conducted in adults

Can TQTS results be applied to pediatric patients?

• It is infeasible to conduct a thorough/dedicated QTc evaluation in each patient population at different age groups.
• Information obtained from adults can / should be served as the basis for safety evaluation in pediatric patients.
Key Issues

• Concentration-QTc modeling and simulation is a useful tool to bridge the information.

• To translate the study results from adults to pediatric patients:
 – How to adjust exposure difference between adult and pediatric patients? (different dosing regimen and different abilities for body to handle drugs)
 – Is there age-dependant sensitivity towards QTc prolongation? (Slope of concentration-QT relationship)
 – Do we expect baseline QTc differences between pediatric and adult patients?
Exposure Difference

- Under the same dose, the exposure difference between adults and children due to body size, organ, and tissue maturation is well-known.
 - PK samples are typically taken during drug development.
 - Population Pharmacokinetics has been applied to adjust the difference.

A typical renal maturation process
Age-dependant Sensitivity

- A key issue/question lack of adequate experience.
- Example: Sotalol (BETAPACE ®)

Patients: Age > 2: Class III potency in children is not very different from that in adults. (Package insert of Sotalol)

Neonate: The smallest children (BSA < 0.33 m²) showed a tendency for larger Class III effect (ΔQTc). (Package insert of Sotalol and Lear et al. JACC 46(7): 1322-30)
Baseline QTc Difference

- Shorter baseline QTc interval is expected in male adolescents.

- Confirmed by increased QTc interval in patients receiving Degarelix or Leuprolide.
Case Study: Thorough ECG Study for Drug X

• Drug X QTc effect was evaluated in a cross-over, single-dose, placebo- and positive-controlled thorough ECG study.

• Treatment arm:
 – Drug X 100 mg IV (represents the highest approved adult dose)
 – Drug X 300 mg IV (adequately covers the worst clinical scenario)
Thorough ECG Study Results

Drug X prolongs QTc, QRS, and PR interval in a dose-proportional manner.

<table>
<thead>
<tr>
<th>Drug X</th>
<th>Mean Cmax* [ng/mL]</th>
<th>ΔΔQTcF Mean [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X Dose</td>
<td>1 X Conc</td>
<td>~ 10 ms</td>
</tr>
<tr>
<td>3 X Dose</td>
<td>3 X Conc</td>
<td>~ 30 ms</td>
</tr>
</tbody>
</table>
Concentration~ QT Relationship

<table>
<thead>
<tr>
<th>Concentration (ng/mL)</th>
<th>QTc (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapeutic</td>
<td></td>
</tr>
<tr>
<td>Supratherapeutic</td>
<td></td>
</tr>
<tr>
<td>Model Prediction</td>
<td></td>
</tr>
</tbody>
</table>

Parent Compound

Metabolite
Simulation Results

Assumption: Similar sensitivity between healthy adults and pediatric patients

<table>
<thead>
<tr>
<th>Route</th>
<th>Indication</th>
<th>Patient</th>
<th>Predicted QTc Interval: Mean (Upper90% CI) [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>CINV</td>
<td>Adults (healthy)</td>
<td>~ 14 (~ 16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peds cancer patients</td>
<td>~ 22 (~ 24)</td>
</tr>
<tr>
<td></td>
<td>PONV</td>
<td>Adults</td>
<td>3 (~ 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peds</td>
<td>~ 4. (~ 5.)</td>
</tr>
</tbody>
</table>

Regulatory action:

Contraindicating pediatric patients for CINV indication
Take-Home Message

• Information obtained from adult TQTS can be served as the basis for safety evaluation in pediatric patients.

• Concentration-QTc modeling and simulation is a useful tool to bridge the information.

• Experience in evaluating QTc interval change in pediatric patients is still limited:

 – Whether age-dependant sensitivity towards QTc interval change exists is an important question, lack of adequate experience.

 – The relationship between QTc prolongation and the arrhythmic risk in pediatric patients is unclear.
Thank you for your attention!

Hao.Zhu@fda.hhs.gov